A Fully Trainable Network with RNN-based Pooling
نویسندگان
چکیده
Pooling is an important component in convolutional neural networks (CNNs) for aggregating features and reducing computational burden. Compared with other components such as convolutional layers and fully connected layers which are completely learned from data, the pooling component is still handcrafted such as max pooling and average pooling. This paper proposes a learnable pooling function using recurrent neural networks (RNN) so that the pooling can be fully adapted to data and other components of the network, leading to an improved performance. Such a network with learnable pooling function is referred to as a fully trainable network (FTN). Experimental results have demonstrated that the proposed RNN-based pooling can well approximate the existing pooling functions and improve the performance of the network. Especially for small networks, the proposed FTN can improve the performance by seven percentage points in terms of error rate on the CIFAR-10 dataset compared with the traditional CNN.
منابع مشابه
A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملSpiral Recurrent Neural Network for Online Learning
Autonomous, self* sensor networks require sensor nodes with a certain degree of “intelligence”. An elementary component of such an “intelligence” is the ability to learn online predicting sensor values. We consider recurrent neural network (RNN) models trained with an extended Kalman filter algorithm based on real time recurrent learning (RTRL) with teacher forcing. We compared the performance ...
متن کاملEmpirical Evaluation of RNN Architectures on Sentence Classification Task
Recurrent Neural Networks have achieved state-of-the-art results for many problems in NLP and two most popular RNN architectures are “Tail Model” and “Pooling Model”. In this paper, a hybrid architecture is proposed and we present the first empirical study using LSTMs to compare performance of the three RNN structures on sentence classification task. Experimental results show that the “Max Pool...
متن کاملRecurrent Neural Networks with Iterated Function Systems Dynamics
We suggest a recurrent neural network (RNN) model with a recurrent part corresponding to iterative function systems (IFS) introduced by Barnsley [1] as a fractal image compression mechanism. The key idea is that 1) in our model we avoid learning the RNN state part by having non-trainable connections between the context and recurrent layers (this makes the training process less problematic and f...
متن کاملAdvanced LSTM: A Study about Better Time Dependency Modeling in Emotion Recognition
Long short-term memory (LSTM) is normally used in recurrent neural network (RNN) as basic recurrent unit. However, conventional LSTM assumes that the state at current time step depends on previous time step. This assumption constraints the time dependency modeling capability. In this study, we propose a new variation of LSTM, advanced LSTM (A-LSTM), for better temporal context modeling. We empl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.05157 شماره
صفحات -
تاریخ انتشار 2017